报告题目:Structure-aware modelling of continuum models via differential complexes
报 告 人:胡凯博 讲座教授(reader) 爱丁堡大学
报告时间:2025年7月8号(星期二) 10:00
报告地点:娱乐城
中心校区正新楼306
Differential complexes encode important algebraic and differential structures of physics models. Different problems involve different differential structures and complexes. For grad-div-curl related problems, such as those from electromagnetism and fluid dynamics,the de Rham complex plays a fundamental role. For other problems, such as those fromcontinuum mechanics, differential geometry, and general relativity, other complexes arerequired, such as the so-called elasticity (Kröner, Calabi) complex. These complexes andtheir properties can be systematically derived from the de Rham complex via a Bernstein–Gelfand–Gelfand (BGG) construction. There appears to be a neat correspondence between a large class of continuum mechanics models and the BGG machinery. Hence, differential complexes also provide a new angle for developing mechanics models and shed light on their structure-aware formulation. In this talk, we discuss the BGG machinery and their correspondence to elasticity, microstructures (micropolar models), continuum defects, dimension reduction, and multi-dimensional models. This paves a way for structure-preserving discretization.
报告人简介:胡凯博,北京大学数学博士(2017年),曾在奥斯陆大学和明尼苏达大学从事博士后研究,并曾任牛津大学胡克研究员。现为爱丁堡大学皇家学会大学研究员。他荣获2023年SIAM计算科学与工程早期职业奖(SIAM Early Career Award)及2024年欧盟ERC起步基金(ERC Starting Grant)。他与张倩和张智民合著的论文被纳入SIAM高影响力文章集;与Douglas Arnold合著的论文《Complexes from complexes》获得2025年ICBS科学前沿奖(ICBS Frontier of Science Award)。他的研究兴趣包括保持结构的有限元方法、离散几何与拓扑及其应用。
胡凯博,北京大学数学博士(2017年),曾在奥斯陆大学和明尼苏达大学从事博士后研究,并曾任牛津大学胡克研究员。现为爱丁堡大学皇家学会大学研究员。他荣获2023年SIAM计算科学与工程早期职业奖(SIAM Early Career Award)及2024年欧盟ERC起步基金(ERC Starting Grant)。他与张倩和张智民合著的论文被纳入SIAM高影响力文章集;与Douglas Arnold合著的论文《Complexes from complexes》获得2025年ICBS科学前沿奖(ICBS Frontier of Science Award)。他的研究兴趣包括保持结构的有限元方法、离散几何与拓扑及其应用。